
More About Scheme:
closures, environments, set! and let

There is a global environment that binds symbols to values.

The expression
(define foo bar)

creates (or changes) the binding of symbol foo to the value of bar.

Consider this example:
(define f (lambda (x) (+ x 1)))
(define g (lambda (x) (f (* x 5)))
(g 2) => 11

(define f (lambda (x) 23)
Now (g 2) => 23

Moral: Be careful how you define things. (define foo bar)
can change things other than foo.

Procedures in Scheme are "first-class values". This means we can
use procedures like any other data value -- they can be arguments
to calls, or the return values of other procedures. To understand
this we need to be very explicit about how procedure calls work in
Scheme.

When we evaluate a list such as (A B C) each of the elements is
evaluated in the current environment, the first element should
evaluate to a procedure, and that procedure is called with the
values of the other elements of the list. For the call a new
environment is created in which the parameters of the procedure
are bound to the values of the arguments, and the body of the
procedure is evaluated in this environment.

Example:
(define foo (lambda (x y) (+ (* x 2) y)))
(define bar (lambda (x) (foo 3 x)))
Evaluate (bar 7) in the top-level environment.

The top-level environment has symbols foo and bar bound
to the values of their procedures.

We evaluate bar and get #<procedure bar>; we evaluate 7
and get 7. So we call #<procedure bar> with value 7. A new
environment is created with x, the parameter of bar, bound
to 7. We evaluate the body of bar: (foo 3 x) in this
environment. Another environment is created with
bindings for the parameters of foo: x is bound to 3 and y is
bound to 7. We evaluate (+ (* x 2) y) in this environment
and get 13.

To make this possible, procedures need to carry their
environments with them. The value of a procedure consists of
three things:

a) The parameter list of the procedure.
b) The environment in which the procedure was created.
c) The body of the procedure.

This is called a closure. When we apply the procedure to
arguments, the environment of its closure is extended to
include bindings of the parameters to the values of the
arguments, and the body is evaluated within this extended
environment.

Here is another example:

(define fo (lambda (x) (lambda (y) (+ x y))))
Evaluate ((fo 3) 4) in the top-level environment.

The top-level environment binds fo to its closure. The
environment for #<procedure fo> is the top-level. The first thing
we do is evaluate (fo 3). This extends fo's environment (the top
level) with a binding for x to 3. We then evaluate fo's body:
(lambda (y) (+ x y)) in this environment. This evaluates to a
closure with parameter list (y), environment {x->3}, and body
(+ x y). So that is the value of (fo 3). We then apply this closure
to the argument 4. To do this we extend the closure's
environment to include a binding of its parameter y to 4: the
new environment is {x->3, y-> 4}. We evaluate (+ x y) in this
environment and get 7.

Note the similarity and differences between the following
functions:

(define f (lambda (x y) (+ x y)))
(define fo (lambda (x) (lambda (y) (+ x y))))

They are similar, since (f 3 4) is 7 and ((fo 3) 4) is 7.
But they are also different since f is a function of two variables
and foo is a function of 1. You can think of (fo 3) as the result of
freezing the first argument of f as x=3, leaving a function of just
variable y. This is called currying f (named after Haskell Curry, a
mathematician at Penn State from 1929 to 1965 who studied
such things. Mr. Curry, by the way, was so important to the
foundations of programming languages that long after his death
the Haskell language was named after him).

Here are some new Scheme expressions: begin, set! and let.

(begin e1 e2 e3 e4 ... en)
This evaluates each of the expressions, returning the result of the
last one.

(begin (+ 3 4) (* 5 6)) => 30

Of course, this is a bit silly until we get expressions that have side-
effects.

(set! x e) (pronounced "set bang")
This changes the binding of symbol x in the current
environment to the value of e. Symbol x must already be
bound in the environment.

This gives us side-effects:

(define x 0)
(begin (set! x 5) (* x 3) => 15

set! causes all sorts of problems that we will talk about later. As
much as possible we will program functionally -- without set!

(let
([sym1 exp1]
[sym2 exp2]
[sym3 exp3]

...
[symn expn])

body)

This evaluates the binding values exp1, exp2, etc. in the current
environment. A new environment is created extending the
current environment with bindings for each of the symbols
sym1, sym2, ... to the value of its expression. The value of the
let expression is the value of its body evaluated within this new
environment. The body may be either a single expression or a
sequence of expressions. In the latter case each of these is
evaluated and the value of the last of them is returned.

Examples:
(let ([x 3] [y 4]) (+ x y)) => 7

(let
([f (lambda (x) (+ x 1))]
[g (lambda (x) (* 2 x))])

(f (g 3)) => 7

(define sumSquares
(let ([sq (lambda (x) (* x x))])

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ (sq (car lat)) (sumSquares (cdr lat)))]))))

Compare these very similar functions. Both produce the correct
sum of the squares of the numbers in lat. If lat is (1 2 3) both
return 14.

(define sumSquares
(let ([sq (lambda (x) (* x x))])

(lambda (lat)
(cond

[(null? lat) 0]
[else (+ (sq (car lat)) (sumSquares (cdr lat)))]))))

(define sumSquares2 (lambda (lat)
(let ([sq (lambda (x) (* x x))])

(cond
[(null? lat) 0]
[else (+ (sq (car lat)) (sumSquares2 (cdr lat)))]))))

sumSquares and sumSquares2 are both recursive procedures.
The closure environment for sumSquares contains a binding for
procedure sq. The closure environment for sumSquares2 is the
top-level. Each time we call sumSquares2 its body, containing
the let-binding for sq, has to be evaluated. This doesn't happen
when we call sumSquares, so sumSquares is more efficient than
sumSquares2.

